Extensions 1→N→G→Q→1 with N=C327D4 and Q=S3

Direct product G=N×Q with N=C327D4 and Q=S3
dρLabelID
S3×C327D472S3xC3^2:7D4432,684

Semidirect products G=N:Q with N=C327D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C327D41S3 = C62.8D6φ: S3/C1S3 ⊆ Out C327D47212-C3^2:7D4:1S3432,318
C327D42S3 = C62.9D6φ: S3/C1S3 ⊆ Out C327D4726C3^2:7D4:2S3432,319
C327D43S3 = C62⋊D6φ: S3/C1S3 ⊆ Out C327D43612+C3^2:7D4:3S3432,323
C327D44S3 = C622D6φ: S3/C1S3 ⊆ Out C327D4366C3^2:7D4:4S3432,324
C327D45S3 = C62.91D6φ: S3/C3C2 ⊆ Out C327D472C3^2:7D4:5S3432,676
C327D46S3 = C6223D6φ: S3/C3C2 ⊆ Out C327D436C3^2:7D4:6S3432,686
C327D47S3 = C62.96D6φ: S3/C3C2 ⊆ Out C327D4244C3^2:7D4:7S3432,693
C327D48S3 = C6224D6φ: S3/C3C2 ⊆ Out C327D4244C3^2:7D4:8S3432,696
C327D49S3 = C62.93D6φ: trivial image72C3^2:7D4:9S3432,678


׿
×
𝔽